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Abstract

This paper discusses the visual feedback control of an
underactuated mechanisms under fixed-camera con-
figuration. The control goal is to stabilize the system
over a desired static target by using a visual scheme
propoused in [4] which basically is a vision system
equipped with a fixed camera. We present a con-
trol scheme based on the combination of a nonlinear
state observer and the visual feedback for an under-
actuated system, the so-called Pendubot, consisting
in a double pendulum actuated only at the first joint.
The paper ends with the presentation of several sim-
ulation results and some guidelines future work are
drawn in the conclusion.

1 Introduction

This paper presents the application of modern linear
systems theory with visual sensor to control an un-
deractuacted mechanical system. In the eighties, the
control of robot manipulators was extensively stud-
ied. Several control strategies based on passivity,
Lyapunov theory, feedback linearization, output reg-
ulation, etc. have been developed for the fully ac-
tuated case, i.e. systems with the same number of
actuators as degree of freedom [6, 10, 22]. The tech-
niques developed for fully actuated robots do not ap-
ply directly to the case of underactuated mechanical
systems [3, 7, 13, 17, 18, 19, 20, 21, 22, 23, 24]. Un-
deractuated mechanical systems or vehicles are sys-
tems with fewer independent control actuators than
degrees of freedom to be controlled.

In the last few years, there has been major
interest in developing stabilizing algorithms for un-
deractuated mechanical systems. The interest comes
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from the need to stabilize systems like ships, under-
water vehicles, helicopters, aircraft, airships, hover-
crafts, satellites, walking robots, etc, which may be
underactuated by design. Actuators are expensive
and/or heavy and are therefore avoided in a system
design. Other systems may also become underactu-
acted due to actuator failure. A visual solution to
actuator failures may be achieved by equipping the
underactueted system with visual sensors. The use
of visual sensor in feedback control loops with robot
manipulators represents an attractive solution to po-
sition and motion control [1, 2, 4, 5].

Figure 1: Schematic representation of the Robot-
camera system

Most existing generalizations of classical vi-
sual servoing techniques exploit a high gain or com-
puted torque feedback to make a dynamic reduction
of the system to a controllable kinematic model for
which the visual servoing task may be solved di-
rectly [5]. The dynamics model of a system is com-
monly ignored in the design of visual servo systems
and closed-loop performance may be severely limited
to ensure that the dynamic reduction is valid. Re-
cently in [11] has explored a more nonlinear aspect
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of the system dynamics, and presented an asymptot-
ically stable method for position regulation for fixed-
camera visual servoing. The dificulties associated
with controlling an underactuated system have re-
ceived even less attention. In [25] has been working
on the visual servoing problem using a Lagrangian
representation of the system dynamics and consider
underactuated and nonholonomic systems. In [8]
proposed a new image-based control strategy for vi-
sual feedback which is applicable to a class of under-
actuated dynamic systems.

The aim of this paper is to introduce the visual
feedback in the control of underactuacted systems.
We develop a dynamic controller using visual sensor
for an underactuated dynamic system which operate
with accurate target information as shown in Figure
1. The proposed approach is motivated by a theo-
retical analysis of the dynamic equation of motion of
a rigid body and exploits structural linear properties
of these dynamics to derive a nonlinear observer and
a linear control algorithm.

The paper is organized in the following man-
ner. Section 2 describes the equivalent representa-
tion of the robot manipulator model while section 3
is devoted to the nonlinear observer structure. Sec-
tion 4 gives the Pendubot model, where it is used in
Section 5 to design a controller. In section 6 shows
some simulation results. Finally, concluding remarks
are given in Section 7.

2 Equivalent Representation of
the Robot Model

The dynamic equation of an n degree-of-freedom
robot manipulator in the continuos time can be writ-
ten as [22]

D (q) q̈ + C (q, q̇) + G (q) = τ (1)

where q is the (n× 1) vector of joint variables (gen-
eralized coordinates), D (q) is the (n×n) symmetric
positive-definite inertia matrix, C (q, q̇) is the vec-
tor of Coriolis and centripetal torques, G (q) are the
gravitational terms, and τ is the (n × 1) vector of
input torques.

Choosing as state vector x =
(

xT1 xT2
)T =(

qT q̇T
)T
, as input u = τ , the description of the

system can be given in state space form as:

ẋ1 = x2 (2)
ẋ2 = −D−1(x1)[C(x1,x2) + G(x1)] + D−1(x1)u

(3)
y = Cx (4)

or

ẋ = Ax + B (x)u+ d (x) (5)
y = Cx (6)

where

A =
[ On×n In×n
On×n On×n

]
, B (x) =

[ On×n
D−1(x1)

]
,

d(x) =
[ On×n
−D−1(x1)[C(x1,x2) + G(x1)]

]
,

C = [0 1 0 0].

where On×n is the (n × n) null matrix, In×n is the
(n× n) identity matrix and y is the output signal.

2.1 Discrete-Time State-Space Equa-
tion

Visual feedback employs discrete-time model. Robot
discrete-time dynamics has been studied by many re-
searchers [12, 14, 15, 16]. To obtain a discrete-time
state-space equation from a continuous-time state-
space equation (5)-(6), we assume that all the mea-
surements of the manipulator state are available at
a sampling rate T , and the input torques are main-
tained constant between the sampling instants, i.e.
over each time interval Ik = [kT (k + 1)T ], where
k ≥ 0 is an integer, for sufficiently small time in-
tervals ẋ can be approximated with a first forward
difference, as follows:

ẋ ≈ x(t+ T )− x(t)
T

(7)

Thus, the differential equation (5) can be expressed
as (approximately)

x(t+ T )− x(t)
T

= Ax + B (x)u+ d (x) (8)

Solving this equation for x(t+ T ), we obtain

x(t+ T ) = (I + TA)x(t) + TB(x(t))u(t) + Td(x(t))
(9)

Evaluation of equations (9) and (6) at t = kT yields
a simple discrete-time model, based on the first order
Euler method

x[(k + 1)T ] = Φx(kT ) + Γ(x(kT ))u(kT )
+Υ(x(kT )) (10)

y(kT ) = Cx(kT ) (11)

where

Φ = (I + TA) Γ = TB Υ = Td
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3 State Nonlinear Observer
Design

We consider the problem of estimating the current
state x(kT ) of a nonlinear discrete-time dynami-
cal system, described by a system of first-order-
difference equations

x[(k + 1)T ] = Φx(kT ) + Γ(x(kT ))u(kT )
+Υ(x(kT )) (12)

y(kT ) = Cx(kT ) (13)

from the past observations y(sT ), s ≤ k, where the
discrete-time index k ∈ {0, 1, 2, . . .} and T is the
sampling period.

For the discrete-time manipulator model form
(12)-(13), the proposed observer is given by

x̂[(k + 1)T ] = Φx̂(kT ) + Γ(x̂(kT ))u(kT )
+Υ(x̂(kT )) + Ke[y− ŷ(kT )](14)

ŷ(kT ) = x̂(kT ) (15)

The resulting error equation takes on the following
form

e(k + 1) = (Φ−KeC)e, e = x− x̂ (16)

As the pair C,A is observable, the eigenvalues of the
error system may be arbitrarly assigned.

4 The PENDUBOT Model

The Pendubot, which is the underactuated system
considered here, it is shown schematically in Figure
2. For the purposes of this work, we assume that it
has a planar motion without friction.

Figure 2: The PENDUBOT system.

For the Pendubot system, the dynamic model
(1) is particularized as

Table 1: Parameters of the PENDUBOT.

notation value unit

Mass of link 1 m1 0.5289 kg

Mass of link 2 m2 0.3346 kg

Length of link 1 l1 0.26987 m

Length of link 2 l2 0.38417 m

Distance to the center of

mass of link 1 lc1 0.13494 m

Distance to the center of

mass of link 2 lc2 0.19208 m

Moment of inertia

of link 1 about its centroid I1 0.013863 Kgm2

Moment of inertia

of link 2 about its centroid I2 0.016749 Kgm2

Acceleration due to gravity g 9.81 m/sec2

Angle that link 1

makes with the horizontal q1 rad

Angle that link 2

makes with the link 1 q2 rad

Torque applied on link 1 τ1 Nw −m

[
D11 D12

D12 D22

] [
q̈1

q̈2

]
+
[
C1

C2

]
+
[
G1

G2

]
=
[
τ1
0

]

(17)
where

D11 = m1l
2
c1 +m2

(
l21 + l2c2 + 2l1lc2 cos (q2)

)

+I1 + I2

D12 = m2

(
l2c2 + l1lc2 cos (q2)

)
+ I2

D22 = m2l
2
c2 + I2

C1 = −2m2l1lc2q̇1q̇2 sin (q2)−m2l1lc2q̇
2
2 sin (q2)

C2 = m2l1lc2q̇
2
1 sin (q2)

G1 = m1glc1 cos (q1) +m2gl1 cos (q1)
+m2glc2 cos (q1 + q2)

G2 = m2glc2 cos (q1 + q2) .

4.1 Equivalent Representation

Choosing as state vector x =
(

xT1 xT2
)T =(

x1 x2 x3 x4

)T :=
(
q1 q2 q̇1 q̇2

)T =(
qT1 qT2

)T
, as input u = (τ1 0)T and q2 as the

output, the description of the system can be given in
state space form (5)-(6), where:
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A =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 ,

B(x) =
1
∆




0 0
0 0
D22 −D12

−D12 D11


 ,

d(x) =
1
∆




0
0

D12(C2 +G2)−D12(C1 +G1)
D12(C1 +G1)−D11(C2 +G2)


 ,

C =
[

0 1 0 0
]
, ∆ = D11D22 −D2

12.

4.2 Discrete-Time State-Space

For the PENDUBOT model, the matrices Φ,Γ,Υ for
discrete-time state-space representation (10)-(11) are

Φ =




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


 ,

Γ = TB =
T

∆




0 0
0 0
D22 −D12

−D12 D11


 ,

Υ = Td =
T

∆




0
0

D12(C2 +G2)−D12(C1 +G1)
D12(C1 +G1)−D11(C2 +G2)


 ,

C =
[

0 1 0 0
]
.

Here, x(kT ) is the state vector (4-vector) at kth sam-
pling instant, u(kT ) control signal (scalar) at kth
sampling and y(kT ) = Cx(kT ) is the output at kth
sampling. This provides an discrete-time state-space
model that can be used in the design of state ob-
servers, as discussed in the section that follows.

5 Control Scheme

Our goal is to use an external camera as sensor and
use an nonlinear observer to estimate the state of the
system and stabilize the Pendubot. In this section it
is shown how a visual feedback control may be de-
rived based on estimation techniques for an fix cam-
era with underactuated rigid body dynamics. Visual
feedback systems incorporate the visual sensors in
the feedback. Figure 3 depicts a block diagram of

the closed-loop control system, this is a block dia-
gram of one degree of freedom (1-DOF). The camera
lens is modelled as a simple gain, Klens, which, due
to perspective, is a function of target distance. We
shall first discuss the full-order state observer and
then the state feedback controller.

Figure 3: Structure of visual feedback control for the
Pendubot. Here, Xt is the world coordinate location
of the target, iXd is the desired location of the target
on the image plane, and iX̃ = iX− iXd is the image
plane error.

5.1 State Observer Design

It is important to note that, in the present analysis,
state x(kT ) is not available by direct measurement.
Since the output y(kT ) = Cx(kT ) can be measured
by the fix camera, we can design a state nonlinear
observer (14)-(15) for the Pendubot model.

5.2 Controller Design

When the Pendubot is in a neighborhood of its top
unstable equilibrium position, a linear controller can
stabilize the pendulum quite adequately. We know
that the linearized system is observable and con-
trollable, then it is possible to design a linear con-
trol [18]. Therefore, the control objective is to stabi-
lize the system around its unstable equilibrium point
x∗ = (x∗1, x

∗
2, x
∗
3, x
∗
4)T= (π2 , 0, 0, 0)T , i.e. to bring the

second pendulum to its upper position and the first
angle q1 to zero simultaneously. The observed state
x̂(k) is used to form the vector control u(k), or

u(k) = −Kx̂(k) (18)

where K is the state feedback gain matrix.
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6 Simulation Results

Numerical simulations assuming a discrete-time im-
plementation of the visual controller showed the per-
formance of the closed loop system. In all the simu-
lations, we consider that the initial condition of the
system is near to the equilibrium point x∗ and the
gain K that stabilizes the linear approximation of
the Pendubot model was obtained by solving a LQR
problem

K =
[ −22.4431− 21.2982− 6.2282− 4.4932

]
,

(19)
the observer feedback gain matrix

Ke =




−2.9468
0.3185
−18.6506

7.7243


 (20)

and the lens gain

Klens = 0.50. (21)

We have used SimulinkTM and MATLABTM to sim-
ulate the full dynamic motion of the Pendubot. Fig-
ure 4 shows the trajectory of the target in the image
plane with iXd = 0, for convenience. The simulation
shows that this controller provides a good perfor-
mance when balancing the links about the unstable
vertical position.

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

q1

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

q2

0 0.5 1 1.5 2 2.5 3
−2

0

2

4

6

time in seconds

u

Figure 4: Simulation results. Positioning with re-
spect to the target Xt = (0, 90◦).

7 Conclusions and Future
Work

This paper presents an alternative approach to the
design of discrete-time feedback controllers and non-
linear state observer for an underactuacted manipu-
lators using a visual feedback. The case studied is
the so-called Pendubot, consisting in a double pen-
dulum actuated only at the first joint. The control
of the Pendubot is specially difficult since it is an un-
deractuated mechanism (two degrees of freedom and
only one input). In this work, we have presented a
linear position controller for the Pendubot systems
with a fixed camera and fixed target. Specifically, by
assuming exact knowledge of the mechanical param-
eters, and by considering an accepted camera model
(as a delay) together with the robot non linear dy-
namics, we have proposed a visual feedback scheme
derived from based on the combination of a nonlinear
observer and the visual feedback. Preliminary results
indicate that visual feedback is potentially attractive
alternative for underactuated systems. An interest-
ing problem is to consider a more realistic camera
model. We are currently working to identify a cam-
era model and implement the algorithm on a Texas
Instruments TMS320C6711 digital signal processor
based system.
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